Perturbation of cullin deneddylation via conditional Csn8 ablation impairs the ubiquitin-proteasome system and causes cardiomyocyte necrosis and dilated cardiomyopathy in mice.

نویسندگان

  • Huabo Su
  • Jie Li
  • Suchithra Menon
  • Jinbao Liu
  • Asangi R Kumarapeli
  • Ning Wei
  • Xuejun Wang
چکیده

RATIONALE Ubiquitin-proteasome system (UPS) dysfunction has been implicated in cardiac pathogenesis. Understanding how cardiac UPS function is regulated will facilitate delineating the pathophysiological significance of UPS dysfunction and developing new therapeutic strategies. The COP9 (constitutive photomorphogenesis mutant 9) signalosome (CSN) may regulate the UPS, but this has not been tested in a critical vertebrate organ. Moreover, the role of CSN in a postmitotic organ and the impact of cardiomyocyte-restricted UPS dysfunction on the heart have not been reported. OBJECTIVE We sought to determine the role of CSN-mediated deneddylation in UPS function and postnatal cardiac development and function. METHODS AND RESULTS Cardiomyocyte-restricted Csn8 gene knockout (CR-Csn8KO) in mice was achieved using a Cre-LoxP system. CR-Csn8KO impaired CSN holocomplex formation and cullin deneddylation and resulted in decreases in F-box proteins. Probing with a surrogate misfolded protein revealed severe impairment of UPS function in CR-Csn8KO hearts. Consequently, CR-Csn8KO mice developed cardiac hypertrophy, which rapidly progressed to heart failure and premature death. Massive cardiomyocyte necrosis rather than apoptosis appears to be the primary cause of the heart failure. This is because (1) massive necrotic cell death and increased infiltration of leukocytes were observed before increased apoptosis; (2) increased apoptosis was not detectable until overt heart failure was observed; and (3) cardiac overexpression of Bcl2 failed to ameliorate CR-Csn8KO mouse premature death. CONCLUSIONS Csn8/CSN plays an essential role in cullin deneddylation, UPS-mediated degradation of a subset of proteins, and the survival of cardiomyocytes and, therefore, is indispensable in postnatal development and function of the heart. Cardiomyocyte-restricted UPS malfunction can cause heart failure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The COP9 signalosome is required for autophagy, proteasome-mediated proteolysis, and cardiomyocyte survival in adult mice.

BACKGROUND The COP9 signalosome (CSN) is an evolutionarily conserved protein complex composed of 8 unique protein subunits (CSN1 through CSN8). We have recently discovered in perinatal mouse hearts that CSN regulates not only proteasome-mediated proteolysis but also macroautophagy. However, the physiological significance of CSN in a post-mitotic organ of adult vertebrates has not been determine...

متن کامل

COP9 signalosome controls the degradation of cytosolic misfolded proteins and protects against cardiac proteotoxicity.

RATIONALE Impaired degradation of misfolded proteins is associated with a large subset of heart diseases. Misfolded proteins are degraded primarily by the ubiquitin-proteasome system, but the ubiquitin ligases responsible for the degradation remain largely unidentified. The cullin deneddylation activity of the COP9 signalosome (CSN) requires all 8 CSN subunits (CSN1 through CSN8) and regulates ...

متن کامل

Molecular Cardiology COP9 Signalosome Regulates Autophagosome Maturation

Background—Autophagy is essential to intracellular homeostasis and is involved in the pathophysiology of a variety of diseases. Mechanisms regulating selective autophagy remain poorly understood. The COP9 signalosome (CSN) is a conserved protein complex consisting of 8 subunits (CSN1 through CSN8), and is known to regulate the ubiquitin-proteasome system. However, it is unknown whether CSN play...

متن کامل

COP9 signalosome regulates autophagosome maturation.

BACKGROUND Autophagy is essential to intracellular homeostasis and is involved in the pathophysiology of a variety of diseases. Mechanisms regulating selective autophagy remain poorly understood. The COP9 signalosome (CSN) is a conserved protein complex consisting of 8 subunits (CSN1 through CSN8), and is known to regulate the ubiquitin-proteasome system. However, it is unknown whether CSN play...

متن کامل

Murine Myocardial Transcriptome Analysis Reveals a Critical Role of COPS8 in the Gene Expression of Cullin-RING Ligase Substrate Receptors and Redox and Vesicle Trafficking Pathways

Background: The COP9 signalosome (CSN) consisting of 8 unique protein subunits (COPS1 through COPS8) serves as the cullin deneddylase, regulating the catalytic dynamics of cullin RING ligases (CRLs), the largest family of ubiquitin ligases Background: The COP9 signalosome (CSN) consisting of 8 unique protein subunits (COPS1 through COPS8) serves as the cullin deneddylase, regulating the catalyt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 108 1  شماره 

صفحات  -

تاریخ انتشار 2011